

MAY/JUNE 2013

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

CHEMISTRY

UNIT 1 – Paper 02

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. This paper consists of SIX questions in two sections. Answer ALL questions.
- 2. For Section A, write your answers in the spaces provided in this booklet.
- 3. For Section B, write your answers in the spaces provided at the end of each question in this booklet.
- 4. ALL working MUST be shown.
- 5. You may use a silent, non-programmable calculator to answer questions.
- 6. A data booklet is provided.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

SECTION A

Answer ALL questions in this section.

Write your answers in the spaces provided in this booklet.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

	the terms	Defin	(a)	1.
	oxidation	(i)		
	reduction .	(ii)		
[2 marks]				
solution of potassium manganate(VII) is added to hydrogen peroxide aurs and the observations include effervescence and a colour change.			(b)	
blour change observed.	State the co	(i)		
[1 mark]				
ΓWO half equations for the reaction, indicating the changes in oxidation	Write the number.	(ii)		
[6 marks]				
les of the two reagents, potassium manganate(VII) and hydrogen peroxide.	State the ro	(iii)		
[2 marks]				

Describe an experiment, including observations , that can be used to compare the oxidizability of the elements chlorine, bromine and iodine.
[4 mar
•
Total 15 ma

KINETICS AND EQUILIBRIA

2.	(a)	Defin	the term 'buffer solution'.	
				[2 marks
	(b)		in, using relevant equations, how a buffer solution containing ammonia ar de reacts in the following circumstances:	nd ammoniun
		(i)	Contamination of the buffer with a small quantity of base	
				[2 marks
		(ii)	Contamination of the buffer with a small quantity of acid	
				[2 marks

(c)	Calcul (CH ₃ C	ate the pH of a buffer solution made from 20.00 cm ³ of 0.10 mol dm ⁻³ propanoic acid CH ₂ COOH) and 40.00 cm ³ of 0.050 mol dm ⁻³ sodium propanoate (CH ₃ CH ₂ COONa).
	(The a	cid dissociation constant, K_a , for propanoic acid is 1.22×10^{-5} .)
		[5 marks]
(d)		aperimental determination of the pH of the buffer solution in 2 (c) was carried out by a of students.
	(i)	List TWO relevant pieces of apparatus and/or materials that may have been used to carry out the experiment.
		[2 marks]
	(ii)	Describe TWO relevant steps taken by the students to determine the pH of the buffer.
		[2 marks]
		Total 15 marks

GO ON TO THE NEXT PAGE

CHEMISTRY OF THE ELEMENTS

3.	(a)	(i)	Outline TWO reasons why aqueous hydroxide ions, OH- (aq), are used in the identificatio of cations.
			[2 marks]
		(ii)	Table 1 shows an incomplete list of a number of cations with the expected results of their respective flam tests.
			Complete the table.
			TADI E 1. EL AME TEST DESHITS

TABLE 1: FLAME TEST RESULTS

Element	Na ⁺	K ⁺	Ca ²⁺	Ba ²⁺	Cu ²⁺
Colour of Flame					Green

[2 marks]

(b) M is a mixture of a soluble and an insoluble salt. Table 2 is an incomplete laboratory report of tests carried out on M.

Complete Table 2 by writing the relevant observations.

TABLE 2: LABORATORY REPORT

No.	Tests	Observations	Inferences
(i)	Add dil. HCl to M and warm.	•	SO ₂ evolved
		•	
(ii)	Shake M with water and then filte.		
	To the colourless filtrate, add acidifie $Cr_2O_7^{2-}$ (aq).	•	SO ₃ ²⁻ (aq) present
(iii)	Dissolve residue from (ii) in dil. HNO ₃ . Add		
	a) KI (aq)	•	Pb ²⁺ present
	and		
	b) boil for 1 minute.	•	PbI ₂ formed

(c)	(i)	Write half equations to explain the observation in test (b) (ii).	[5 marks]
			[4 marks]
	(ii)	Identify the salts in mixture M.	
			[2 marks]

Total 15 marks

GO ON TO THE NEXT PAGE

SECTION B

Answer ALL questions.

Write your answers in the spaces provided at the end of each question.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

4.		n oxide, quicklime, is produced by roasting limestone. Quicklime is used to neutralize the of soils.
	(a)	Defin the term 'standard enthalpy of formation'. [2 marks
	(b)	Write a balanced equation for formation of CaO(s). [1 mark
	(c)	Construct a Born-Haber cycle for the formation of CaO(s) showing clearly, using equations the steps of the enthalpy changes involved. [6 marks]
	(d)	Distinguish between 'exothermic enthalpy change' and 'endothermic enthalpy change', citin enthalpy changes from your Born-Haber cycle in (c) to support your answer. [4 marks]
	(e)	Explain, by writing an equation, how the data from the Born-Haber cycle can be used to calculate the lattice energy of CaO(s). [2 marks]
		Total 15 mark
Write	the ansv	ver to Question 4 here.

Write the answer to Question 4 here.	

Write the answer to Question 4 here.

KINETICS AND EQUILIBRIA

- 5. (a) With the aid of appropriate Boltzmann distribution curves, (using the axes provided on page 12) describe the effect of EACH of the following on reaction rates:
 - (i) Temperature [4 marks]
 - (ii) Catalyst [3 marks]
 - (b) The values of initial rates measured for the reaction below are recorded in Table 3.

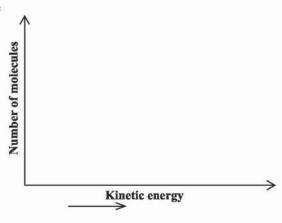
$$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$$

TABLE 3: INITIAL RATES DATA

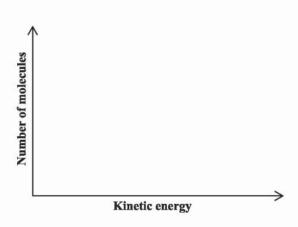
Experiment	[S ₂ O ₈ ²⁻] (mol dm ⁻³)	[I ⁻] (mol dm ⁻³)	Initial Rate (mol dm ⁻³ min ⁻¹)
1	0.15	0.25	1.4×10^{-5}
2	0.15	0.50	5.6 × 10 ⁻⁵
3	0.075	0.50	2.8 × 10 ⁻⁵
4	0.075	0.25	7.0×10^{-6}

- (i) Use the information from the table to deduce the rate equation and calculate the overall order of the reaction. [5 marks]
- (ii) Calculate the

a) rate constant [2 marks]


b) initial rate of the reaction when $[S_2O_8{}^2]_0 = 0.13$ mol dm⁻³ and $[I^-]_0 = 0.32$ mol dm⁻³.

Total 15 marks


[1 mark]

Write the answer to Question 5 here.

(a) (i) Temperature

(ii) Catalyst

Write the answer to Question 5 here.					

Write the answer to Question 5 here.					

CHEMISTRY OF THE ELEMENTS

6.	(a) The atomic radii across the firs row of transition elements show a gradual decrea			se.			
		Outlin	the reasons for this trend.	[2 marks			
	(b)	(i)	State the FULL electronic configuratio for the ions, Ti ³⁺ ; Fe ²⁺ ; Cr ³⁺ .	[3 marks			
		(ii)	Explain, in terms of electronic configuration why iron(II) is readily ciron(III).	onverted to			
	(c) When aqueous copper ions are treated separately with aqueous ammonia hydrochloric acid, the complex ions [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ and [CuCl ₄] ²⁻ are						
		State t	State the name of the shape for				
		(i)	EACH of the complex ions	[2 marks			
		(ii)	a complex ion of the formula $[ML_4]^{n-}$ where M is the central metal and I the ligand.	represents			
	(d)	When	titanium(III) chloride is dissolved in water, a purple solution is formed.				
		Explai	in carefully how the colour is produced.	[5 marks			
			Tota	l 15 marks			
Write	the ans	wer to (Question 6 here.				

Write the answer to Question 6 here.					

Write the answer to Question 6 here.					

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.